National Association of City Transportation Officials (NACTO): Urban Bikeway Design Guide

4/26/2011

Presented by **Trevor Booz**

BIKE ON

National Association of City Transportation Officials (NACTO)

- Founded in 1996
- Exchange of transportation ideas, insights, and practices among large central cities
- Sees city transportation departments as partners in regional and national efforts

- Member Cities:
 - Atlanta
 - Baltimore
 - Boston
 - Chicago
 - Detroit
 - Houston
 - Los Angeles
 - Minneapolis
 - New York
 - Philadelphia
 - Phoenix
 - Portland
 - San Francisco
 - Seattle
 - Washington, DC

Bikeway Design Guide

- Many members found existing design manuals inadequate
- Created through
 - Survey of expert knowledge
 - Existing guidelines throughout the world
 - Innovative projects in the US

- Guide provides
 - Plan drawings
 - 3D renderings
 - Photos of actual projects throughout the US
- Guide can be adopted by cities, counties or states
 - Stand alone document
 - Supplement

Bikeway Design Guide

- Most treatments are not directly referenced in
 - AASHTO Guide to Bikeway Facilities
 - MUTCD
- Many elements of treatments are found within these documents
- MUTCD Approval
 <u>Status</u>

Bike Signal still classified as experimental by FHWA

Bikeway Design Guide

- Treatments presented offer varying levels of guidance
- Types of elements presented
 - Required
 - Recommended
 - Optional

- Urban situations are complex
 - Treatments should be tailored to unique situations
 - Engineering judgment

Bikeway Design Guide Elements

Bike Lanes

Cycle Tracks

Intersections

Signals

Signs & Markings

Bike Lanes - Overview

- Portion of roadway designated for bicyclists
 - Striping
 - Signage
 - Pavement markings
- Enables cyclists to ride at preferred speed without interference
- Facilitates predictable behavior with motorists

🗆 Types

- Conventional
- Buffered
- Contra-Flow
- Left-Side

Conventional Bike Lanes

- Right side of street
 - Adjacent to curb or adjacent to parking
- Desired width to
 adjacent curb 6ft
 - Width to longitudinal joint
 4ft
- Minimum width next to parking lane – 5ft
- Minimum widths need to consider illegal parking

Conventional Bike Lanes

- Distance from parking lane needs to account for "dooring"
 - 14.5ft desired (12ft absolute minimum)
 - Solid white line used next to bike lane to minimize encroachment of parked cars
- Consideration for
 - Gutter seams
 - Drainage inlets
 - Utility covers

Buffered Bike Lanes

Applications

- Streets with high speeds, high volumes, large truck traffic
- Streets with extra lane width or extra lanes
- Encourages cyclists to ride outside of door zone
- Space for bicyclists to pass each other
- Increases cyclist's perception of safety

Contra-Flow Bike Lanes

- Allow cyclists to ride on one way street in opposite direction of motorized traffic
- Applications
 - Large number of cyclists already riding wrong way
 - Corridors without adequate alternate routes
 - Unsafe or excessive extra travel
 - Works best on low-speed, low volume streets
 - Allows cyclists to use safer less trafficked streets

Contra-Flow Bike Lane

Left-Side Bike Lanes

- Placed on left side of one-way or two way median divided streets
- Applications
 - Areas with frequent bus stops or truck loading zones
 - High parking turnover
 - High right turn movements
 - Rush hour parking restrictions

Cycle Tracks - Overview

- Exclusive bike facility that combines
 - User experience of separate path
 - On-street infrastructure of conventional bike lane
- Can be at
 - Street level
 - Sidewalk level
 - Intermediate level

- One-Way Protected
 - Cycle Tracks
- Raised Cycle Tracks
- Two-Way Cycle Tracks

One-Way Protected Cycle Track

- Street level
- Prevents double-parking
- Eliminates risk and fear of collisions with over-taking vehicles

Applications

- Streets which bike lanes would cause many bicyclists to feel stress due to
 - Multiple lanes
 - High traffic volumes
 - High speed traffic
 - High demand for double parking
 - Large parking turnover

One-Way Protected Cycle Track

Raised Cycle Track

- Vertically separated from motor vehicle traffic
 - Sidewalk level or intermediate level
- Keeps motorists from easily entering
- Can visually reduce street width
- Applications
 - High speed streets with few driveways/cross streets
 - Streets where vehicle encroachment can be a concern

Two-Way Cycle Track

Applications

- One-way streets where contra-flow bicycle travel is desired
- Along streets with high motor vehicle volumes and/or speeds
- Streets with few intersection and driveway conflicts
- Streets with extra ROW

Two-Way Cycle Track

http://www.flickr.com/photos/goodcough/5585685113/in/pool-1690942@N22/

Intersection Treatments - Overview

- Intersection design should reduce conflicts between bicyclists and vehicles
 - Heightening level of visibility
 - Denoting right of way
 - Facilitating awareness
- Treatments resolve queuing and merging maneuvers

Bike Boxes

- Provides cyclists with a safe and visible way to get ahead of queuing traffic during red signal phase
- Benefits
 - Increases visibility
 - Facilitates left turn positioning
 - Helps prevent "right-hook" conflicts
 - Groups bicyclists together to clear an intersection quickly
 - Pedestrians benefit from reduced vehicle encroachment

http://www.flickr.com/photos/gregraisman/4942399298/in/faves-metrola/

Bike Boxes

Applications

- High bicycle left turns/motor vehicle right turns
- Desire to better accommodate left turning bicycle traffic
- When dominant motor vehicle traffic flows right and bicycle traffic continues through

Intersection Crossing Markings

- Indicate intended path of cyclists
- Raises awareness of conflict areas
- Reinforces that through bicyclists have priority
- Makes bicycle movements more predictable
- Guidance covers a wide variety of markings currently in use
 - Cities should consider standardizing future designs

Intersection Crossing Markings

Two-Stage Turn Queue

- Offer bicyclists a safe way to make left turns
- Increases comfort but may increase signal delay
- Reduces turning conflicts
 between bicyclists and motor
 vehicles
- Applications
 - Significant number of left turns from right hand facility
 - Assist navigating streetcar tracks

Two-Stage Turn Queue

Median Refuge Island

- Placed in center of the street to facilitate crossings
- Provides a protected space for bicyclists to wait for gap in traffic
 - On two-way streets allows time to look for gaps in one direction at a time
- Decreases cyclist delay in crossing street
- Typically applied when
 bikeway crosses high volume
 or high speed street

Through Bike Lanes

- Enables bicyclists to correctly position themselves to the left of right turn lanes or vice versa
- Alerts motorists to expect and yield to merging bicycle traffic
- Typically applied on streets
 with dedicated right and left
 hand turn lanes

Through Bike Lanes

Combined Bike Lane/Turn Lane

- Typically applied where there is a right turn lane but not enough space to maintain a standardwidth bike lane
- Guidance for bicyclists in situation where the bicycle lane would otherwise be dropped

Cycle Track Intersection Approach

- Protective barrier removed
- Lowering raised cycle track
- Shifting bike lane to be adjacent or shared with motor vehicle travel
 - Cycle track may transition to a conventional bike lane or combined turn lane

Cycle Track Intersection Approach

Bicycle Signals - Overview

Types of signals

- Traditional three lens signal heads
- Flashing amber warning beacons
- Hybrid Signal Crossings
- Determining type
 depends on a variety
 of factors

Bicycle Signal Heads

- Installed at signalized intersections to indicate bicycle specific phases
 Bicycle only movements
- Improves operation and provides appropriate information for cyclists as compared to pedestrian signals

Bicycle Signal Heads

Applications

- Split signal phases where bicycle movements conflict with motor vehicle movements
- Intersections with contraflow movements that otherwise would have no signal indication
- To give bicyclists an advanced green
- Complex intersections

Signal Detection and Actuation

- Push button or automated means
 - Induction Loop
 - Video Detection
 - Push-button
 - Microwave
- Induction loops
 calibrated to small
 metallic mass
 - Pavement markings to indicate cyclist positioning

Active Warning Beacon

- User-actuated flashing lights that supplement warning signs at unsignalized crosswalks
- Flash pattern similar to emergency flashers on police vehicles
- Lower cost alternative to traffic signals and HAWK signals

Hybrid Signal

- Also known as Highintensity Activeated crossWalK (HAWK)
- Two red lenses over single yellow lens
 - No signal indications for motor vehicles on minor approach
- Can be implemented when a conventional signal warrant is not met

Bikeway Signing and Marking -Overview

- Signage includes wayfind and route signage
- Markings are applied directly to pavement to designate
 - Right-of-way
 - Direction
 - Potential Conflict Area
 - Route option

Colored Bike Facilities

- Colored pavement increases visibility
 - Green color should be used
- Identifies conflict areas
 - Reduces bicycle conflicts with turning motorists
 - Increases motorist yielding behavior
- Applied in bike lanes and cycle tracks

Shared Lane Markings

- □ Also known as "sharrows"
- Help bicyclists position
 themselves safely in lanes too
 narrow to share
 - Keeps cyclists out of door zone
- Alerts motorists to the potential presence of bicyclists
- Reduces sidewalk and wrong way riding
- Applications where low speed differential exists
 - Downhill sharrow/uphill bike lane

http://azbikelaw.org/blog/sharrow-shared-lane-marking-slm/

Shared Lane Markings

Bike Route Wayfinding Signage

- Familiarizes users with bikeway network
- Overcomes a "barrier to entry" for infrequent bicyclists
- Signage with mileage and travel times may help minimize tendencies to overestimate bicycle trip times

Using the Guide

- Treatments presented are based on real-life experience
- Urban situations are complex
 - Treatments tailored to individual situation
- Some treatments may not be in MUTCD
 - FHWA allows for experimental projects

- Currently only available online:
 - <u>http://nacto.org/cities-</u> <u>for-cycling/design-</u> <u>guide/</u>
- Print edition availablelate summer 2011